Characterization of a TIR-NBS-LRR gene associated with downy mildew resistance in grape.

نویسندگان

  • J J Fan
  • P Wang
  • X Xu
  • K Liu
  • Y Y Ruan
  • Y S Zhu
  • Z H Cui
  • L J Zhang
چکیده

Grapevine downy mildew, caused by Plasmopara viticola, is a devastating disease that results in considerable economic losses as well as environmental damage through the repeated application of fungicides. The nucleotide-binding site leucine-rich repeat gene family functions in plant immunoactivity against various pathogens and pests. In this study, the 5' and 3' ends of the resistance gene homology fragment RGA5 were obtained by rapid amplification of cDNA ends. The 4282-base pair full-length cDNA was obtained using gene-specific primers, and the corresponding 1335-amino acid protein sequence contained characteristic nucleotide-binding site leucine-rich repeat domains of plant resistance proteins, including the toll-interleukin receptor type region. Expression of RGA5 during P. viticola infection and abiotic stress was investigated using quantitative real-time polymerase chain reaction. The results showed that treatment with P. viticola and 4 abiotic stimuli (salicyclic acid, methyl-jasmonate, abscisic acid, H2O2) significantly induced RGA5 within 12 days of inoculation. Therefore, RGA5 may play a critical role in protecting grapevines against P. viticola via signaling pathways involving these molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular characterization of two types of resistance in sunflower to Plasmopara halstedii, the causal agent of downy mildew.

Depending on host-pathotype combination, two types of sunflower-Plasmopara halstedii incompatibility reactions have previously been identified. Type I resistance can restrict the growth of the pathogen in the basal region of the hypocotyls, whereas type II cannot, thus allowing the pathogen to reach the cotyledons. In type II resistance, a large portion of the hypocotyls is invaded by the patho...

متن کامل

Identification and characterization of a NBS–LRR class resistance gene analog in Pistacia atlantica subsp. Kurdica

P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran.  The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) gene...

متن کامل

Study of new NBS-LRR genes analogues in cucurbits native types in Iran

Nucleotide binding site leucine-rich repeats (NBS-LRR) accounting for the main disease resistance proteins play an important role in plant defense against pathogen attack. The current study aimed to identify new NBS-LRR gene members in native types of cucurbit species in Iran. Accordingly, DNAs of melon, cucumber and cantaloupe native types to Iran were identified using three primer pairs. PCR ...

متن کامل

Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants.

Plant resistance (R) genes have evolved specific recognition capabilities in defense against pathogens. The evolution of R gene function and maintenance of R gene diversity within a plant species are therefore of great interest. In the Arabidopsis accession Wassilewskija, the RPP1 region on chromosome 3 contains four genetically linked recognition specificities, conditioning resistance to diffe...

متن کامل

Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components.

In Arabidopsis, RPP4 confers resistance to Peronospora parasitica (P.p.) races Emoy2 and Emwa1 (downy mildew). We identified RPP4 in Col-0 as a member of the clustered RPP5 multigene family encoding nucleotide-binding leucine-rich repeat proteins with Toll/interleukin-1 receptor domains. RPP4 is the orthologue of RPP5 which, in addition to recognizing P.p. race Noco2, also mediates resistance t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2015